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Abstract. Ultrafine magnetic particles consisting of a metastable iron–mercury alloy in Hg
have been investigated by M̈ossbauer spectroscopy and magnetization measurements. It was
found that the magnetic particles interact strongly, and around 100 K there is a transition from
a superparamagnetic state to a state in which the magnetic moments of the particles are ordered.
The magnetic entropy change induced by application of a magnetic field was determined in the
temperature range from 70 to 200 K. When the sample was magnetized in 1 T the magnetic
entropy change was almost constant in the temperature range from 130 to 200 K. In an applied
field of 0.1 T, the entropy change was lower, and decreased with increasing temperature in the
same temperature range. A model which takes into account the magnetic interactions between
the particles was found to give a better description of the magnetic entropy change than a model
for non-interacting superparamagnetic particles.

1. Introduction

Upon application of an external magnetic field, the magnetic spins in a material attempt
to align with the field, thereby reducing the magnetic entropy of the spin system. If this
process is performed adiabatically, the specimen temperature will rise. Conversely, if the
magnetic field is removed adiabatically the specimen temperature will be reduced by the
same effect. This temperature change is referred to as the magnetocaloric effect. The
magnitude of this effect depends strongly on material-related properties including the size
of the magnetic moment and the heat capacity of the system.

The magnetocaloric effect in paramagnetic materials has been widely used for magnetic
refrigeration below liquid helium temperature [1]. Due to the potential for applications,
extensive studies have been carried out in order to make use of the magnetocaloric effect
also at higher temperatures. It has been suggested that ferromagnetic materials with high
ordering temperatures [2–5] or magnetic nanometre-size particles [6–10] may be used for
this purpose.

The magnetic properties of nanometre-scale materials differ considerably from those
of bulk materials, and this will influence the observed magnetocaloric effect. Ultrafine
magnetic particles, with particle diameters below approximately 20 nm, are single-domain
particles and are superparamagnetic, i.e. the magnetization direction fluctuates with a
temperature-dependent relaxation time,τ [11, 12]. The blocking temperature is defined
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as the temperature at whichτ is equal to the timescale of the experimental technique that
is used to study the magnetic properties of the sample. Therefore different experimental
techniques may yield different blocking temperatures.

In samples with a strong magnetic inter-particle interaction (dipole interaction and/or
exchange interaction) the magnetic moments of the particles may order below a critical
temperature [13–17]. Depending on, for example, the geometrical arrangement of the
particles, the ordered state may have parallel spins (superferromagnetism) or a spin-glass-
like structure. In practice, there will be a distribution in the strength of interactions because
of, for example, the particle size distribution and the more or less random distribution
of particles in the sample. Thus there will normally not be a uniquely defined transition
temperature in a sample containing magnetic nanoparticles. Anyway, we use in this paper
the term ‘ordering temperature’, by which we mean the temperature at which approximately
half of the nanophase magnetic material is in a state which is ordered due to inter-particle
interactions. The term ‘ordered state’ should be understood in a similar way.

In the superparamagnetic state the magnetic moment relaxes quickly, and the system is
magnetically disordered, but the application of a magnetic field will lead to a more ordered
state with a lower entropy. It has been shown [6–10] that the entropy change, and thus the
magnetocaloric effect, in samples of ultrafine magnetic particles may be larger by several
orders of magnitude than that of bulk materials. In a system consisting of strongly interacting
particles, the entropy change above the ordering temperature is enhanced compared to that
of non-interacting particles [6]. In such a system one may find a large magnetocaloric effect
even at high temperatures.

The iron–mercury system was one of the first systems in which superparamagnetic
relaxation was investigated in detail [18–23], and several studies have been carried
out in order to elucidate the properties of this system [24–28]. The samples consist
of ultrafine particles of a metastable ferromagnetic Fe–Hg alloy in Hg [27]. As the
superparamagnetic relaxation is fast at relatively low temperatures, different experimental
techniques may be applied to study the relaxation and yield information about the strength
of the magnetic interaction. Here we present results of Mössbauer spectroscopy and
magnetization measurements, which show that the magnetic properties of the samples are
strongly influenced by magnetic inter-particle interactions. Furthermore, we present results
of studies of the entropy change accomplished by applying moderate magnetic fields of
0.1 T and 1 T. It is found that the entropy change is enhanced due to the inter-particle
interactions.

2. The magnetocaloric effect in samples of nanoparticles

According to basic thermodynamics and the thermodynamic Maxwell equation, the entropy
change dS in a spin system can be calculated [6, 29] from

dS =
(
δS

δT

)
B

dT +
(
δM

δT

)
B

dB (1)

whereM is the magnetization, dT the change of the temperature, and dB the change of the
applied magnetic field.

For a process at constantB, we have(
δS

δT

)
B

= cB

T
(2)

wherecB is the heat capacity at constantB.
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For a reversible adiabatic process dS = 0, in which case

dT = − T
cB

(
δM

δT

)
B

dB. (3)

This is the general expression for the temperature change when the applied field is
changed.

For an isothermal magnetization process one can calculate the contribution from the
magnetization to the entropy change by the use of equation (1):

1S =
∫ B1

0

(
δM

δT

)
B

dB (4)

whereB1 is the maximum applied magnetic field. SettingT = Ti and1T = Ti+1−Ti , one
finds for small values of1T

1Si ≈ 1

1T

∫ B1

0
[M(Ti+1, B)−M(Ti, B)] dB (5)

where1Si is the entropy change of the spins obtained by isothermal magnetization from
zero field toB1 at the temperatureTi .

The entropy change can thus be calculated from the area enclosed between two
isothermal magnetization curves divided by the temperature difference between the isotherms
[30]. The corresponding temperature change will be

1T = −1S T
cB
. (6)

In a sample of non-interacting superparamagnetic particles the magnetization is given
by

M = nµL(a). (7)

HereL(a) = coth(a)−1/a is the Langevin function,n the number of particles per unit
volume,µ the magnetic moment of a particle, anda = µB/(kBT ) wherekB is Boltzmann’s
constant.

By differentiating (7) with respect to temperature, one obtains(
δM

δT

)
B

= nkB
(
a2

B
cosech2(a)− 1

B

)
. (8)

Inserting (8) in (4) and performing the integration, one obtains [19]

1S = nkB
(

1− a coth(a)+ ln

(
sinh(a)

a

))
. (9)

This equation gives the magnetic entropy change for isothermal magnetization of
a superparamagnetic material where the magnetic interaction between the particles is
negligible.

Above the ordering temperature of a system of strongly interacting particles with
negligible anisotropy,(δM/δT )B is larger than that for similar non-interacting particles
at the same temperatures [6, 30]. This will, according to equation (4), lead to a larger
entropy change. Therefore, such a system may show a large magnetocaloric effect even
at high temperatures. One can take into account the magnetic interaction between the
nanometre-size particles by means of a mean-field model [14, 31–34]. In this model it
is assumed that the magnetic field is applied parallel to the mean-field direction, that the
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magnetic anisotropy is negligible, and that there is only one particle size. The magnetization
of an ensemble of interacting particles may then be given as [14, 31–34]

M = µnb(T , B) (10)

whereb(T , B) is an order parameter given [32] by

b(T , B) = L
(

3To
T
b(T , B)+ µB

kBT

)
= L(x). (11)

HereTo is the ordering temperature of the system andL(x) is the Langevin function. By
differentiating (10) with respect to temperature, one obtains [34](

δM

δT

)
B

= −µnL
′(x)(3Tob(T , B)+ µB/kB)

T (T − 3L′(x)To)
dB (12)

where

L′(x) = 1

x2
− 1

sinh2(x)
. (13)

Using equation (4) one obtains

1S = −µn
∫ B1

0

L′(x)(3Tob(T , B)+ µB/kB)
T (T − 3L′(x)To)

dB. (14)

Equation (14) can be solved numerically.

3. Experimental procedure

A sample of iron–mercury alloy particles in Hg was prepared as described in [25]. The
particles were concentrated by use of a weak magnet. The concentrated part of the sample
was used for the experimental studies. It is the same sample as was investigated in [35]. For
magnetic measurements a sample of the alloy was put into a cylindrical holder with diameter
3 mm and length 4 mm. The sample used for Mössbauer spectroscopy was prepared by
squeezing a droplet of the liquid and freezing it in liquid nitrogen.

Mössbauer spectra were obtained using a constant-acceleration spectrometer with a
50 mCi source of57Co in rhodium. Isomer shifts are given relative to that ofα-Fe at room
temperature.

The magnetic measurements were performed with a vibrating-sample magnetometer
from Oxford Instruments in which magnetic fields,B, up to 12 T can be applied and the
sample temperature,T , varied between 4 K and room temperature. In the magnetometer
there are two pairs of pick-up coils with different vertical distances,h, between the coils in
each pair, the peak coils withh = 7.5 mm and the flat coils withh = 15.3 mm. In order to
investigate any influence of the sample geometry [36], the magnetic moment of the sample
was measured at 200 K with each of the coil pairs. The zero-field-cooled magnetization
curve,MZFC , was measured on the sample that was initially cooled to 5 K in zero field.
Then a small field (3–40 mT) was applied, and the magnetization measured in a constant
field during heating. To obtain the field-cooled magnetization,MFC , the sample was cooled
to 200 K in zero field. This is well below the melting point of the sample, and still in
the region where all the particles undergo superparamagnetic relaxation. Then a constant
small field was applied, and the magnetization measured during cooling down to 10 K. The
cooling and warming rates were 0.05 K s−1. The initial susceptibility,χi , was determined
from the slope of the isothermal magnetization curves in low fields.

Isothermal magnetization curves were measured in fields up to 1 T at different
temperatures, with steps of1T = 5 K, in the range between 70 and 200 K.
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Figure 1. Mössbauer spectra of the Fe–Hg sample obtained in the temperature range from 5 to
200 K in zero applied magnetic field.

4. Results

Figure 1 shows M̈ossbauer spectra obtained in the temperature range from 5 to 200 K in
zero applied magnetic field. The spectrum at 5 K could be fitted with two sextets which
gave the following values for the magnetic hyperfine fields and the isomer shifts:Bobs =
39.7± 0.5 T, δ = 0.18± 0.02 mm s−1 andBobs = 36.1± 0.5 T, δ = 0.38± 0.02 mm s−1

[35]. For both components the quadrupole shift was negligible. This suggests two main
sites for the iron atoms. However, relatively broad lines are observed in the fit with the
two sextets, which indicates a distribution of hyperfine fields, possibly caused by disorder.
This is in accordance with previous results [25–28] for similar samples.

The Mössbauer spectra obtained above 80 K are significantly affected by
superparamagnetic relaxation. This implies that the iron is present in small particles. The
temperatureTB , defined as the temperature at which 50% of the spectrum is affected by
superparamagnetic relaxation, is determined to 150± 20 K.

In the magnetic measurements we found that the sample position for maximum output
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signal was about 3 mm above the position with the sample in the centre of the pick-up coils.
There was no significant difference between the magnetic moments obtained with the peak
and flat coils respectively. For the actual geometry a calibrated signal from the peak coils
is expected to be about 9% lower than that from the flat coils [36]. From the observations
we can conclude that the magnetic particles are concentrated in a smaller volume of the
sample at its lower end.

Figure 2. MZFC - andMFC -curves of the Fe–Hg sample obtained in an applied magnetic field
of 3 mT.

Figure 3. MZFC -curves of the Fe–Hg sample obtained in the temperature range from 20 to
160 K in applied magnetic fields of 3 mT, 10 mT, 20 mT, 30 mT, and 40 mT.

In figure 2,MZFC andMFC are shown for a magnetic field of 3 mT. It can be seen that
there is a rounded maximum inMZFC at TP = 83 K. MFC coincides withMZFC at high
temperatures, but as the temperature approachesTP from above, the curves start to diverge
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at a temperature ofTd = 130 K. This indicates the temperature at which the relaxation
time of the particles with the highest energy barriers (or the strongest interactions) becomes
comparable to the experimental measuring time. At temperatures belowTP , MFC flattens
out and becomes almost constant.

In figure 3,MZFC-curves are shown for applied fields of 3 mT, 10 mT, 20 mT, 30 mT,
and 40 mT. It can be seen that the value ofTP decreases when the applied field is increased.
This field dependence ofTP is shown in figure 4. At low applied magnetic fields theTP -
value becomes almost constant, and the extrapolation to zero applied field yields aTP -value
of approximately 83 K.

Figure 4. The peak temperature,TP , as a function of the applied magnetic field.

Figure 5. The inverse initial susceptibility, corrected for the temperature dependence of the
intrinsic magnetization of the particles, as a function of the temperature. The solid line is the
best fit obtained by linear regression to the data in the temperature range from 140 to 200 K.

The initial susceptibility of an ensemble of magnetic particles is proportional to the
square of the magnetic moments and thus to the square of the spontaneous saturation
magnetization of the particles,M0(T ). M0(T ), which is temperature dependent, is
determined from the high-field magnetization extrapolated to zero field [35]. In order
to estimate the contribution to the temperature dependence ofχi , which is not due to the
temperature dependence ofM0(T ), the susceptibility is multiplied by [M0(0)/M0(T )]2. In
figure 5, the inverse of this susceptibility is plotted versus temperature. As can be seen, it
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obeys a Curie–Weiss law in the temperature range 140 K–200 K, where all of the particles
are superparamagnetic. The line in figure 5 was obtained by linear regression. The intercept
with the T -axis yields a Curie–Weiss temperature ofTCW = 93± 2 K. The slope yields a
Curie constant,C = nµ0〈µ(0)2〉/(3kB), wheren is the number of particles per volume unit
[35], µ0 the permeability of vacuum, and〈µ(0)2〉1/2 the root mean square (RMS) value of
the particle moment at 0 K. From the Curie constant we estimate the RMS value of the
magnetic moment per particle to be〈µ(0)2〉1/2 = 2.0× 10−20 J T−1 at 0 K.

Figure 6. The isothermal magnetization as a function of the applied field between 70 and 200 K,
with a temperature difference of 10 K between the magnetization curves.

Figure 7. The magnetization as a function of the applied field at 160 K. The simulated curves
were obtained from the following models: (1) the Langevin function; (2) a model in which the
anisotropy is included [37]; and (3) a model in which both the anisotropy and the magnetic
inter-particle interactions are taken into account (see the text). In all three models we have
integrated over the particle size distribution.

Some of the measured isothermal magnetization curves are shown in figure 6. The
curves cannot be described by a Langevin function nor by a superposition of Langevin
functions, even aboveTd where all particles are superparamagnetic. This is illustrated
in figure 7. Such a deviation from Langevin behaviour may be explained by magnetic
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anisotropy [37] and/or magnetic interactions between the particles. In section 4 we will
discuss how these effects can be taken into account in a simple model.

5. Discussion

5.1. Inter-particle interactions

The influence of inter-particle interactions on the magnetic properties of nanoparticles has
been the subject of numerous theoretical and experimental studies [12–17, 31–34, 38–51].
The inter-particle interactions will affect the energy barriers separating the energy minima
of superparamagnetic particles, and thereby have an influence on the relaxation time. As
discussed in the introduction, strong magnetic interaction may also result in ordering of the
magnetic moments of the particles below a critical temperature. The presence of strong
interactions between the FeHg particles may be inferred from several experimental features;
the comparison between the blocking temperatures in experiments with different timescales,
the field dependence ofTP , the temperature dependence ofχi aboveTP , and the shape of
the magnetization curves.

The peak temperature,TP , in MZFC , and the temperature,TB , obtained from the
Mössbauer spectroscopy measurements, may either be due to thermal blocking of the
magnetic moments of non-interacting or weakly interacting particles (in which case one
considers a blocking temperature), or to ordering of the magnetic moments of strongly
interacting particles (in which case one may use the term ‘ordering temperature’) [16, 17,
38]. One may distinguish between these two cases by considering the ratio between the
two temperaturesTP and TB . For systems of non-interacting particles, one would expect
a ratio between the blocking temperature determined from the Mössbauer spectroscopy
measurement (with the experimental timescale of about 5× 10−9 s) andTP determined
from magnetization measurements (with the experimental timescale of about 10 s) to be
in the range 4–6 [16, 17, 52, 53]. For strongly interacting particles, where the transition
to the superparamagnetic state occurs at an ordering temperature, the ratio should be close
to 1 [16, 17, 32]. In our case the ratio is approximately 1.8. This indicates the presence of
magnetic interactions between the particles.

The decrease ofTP as a function of the applied field (figure 4) is a further indication of
the importance of interactions between the particles. An increase ofTP whenB increases
has been observed in experiments on dilute ferrofluids [38, 54]. In [54] the effect was
explained by means of the non-linear relation between the magnetization and field in a
system with negligible interactions. In samples with significant inter-particle interaction,
TP decreases with increasing values ofB [17, 38]. The large value ofTCW , obtained from
the Curie–Weiss analysis, supports the conclusion that there is a strong magnetic interaction
between the particles in the sample [15, 32, 52].

A detailed interpretation of experimental results for the magnetic properties of small
particle systems is, in general, not straightforward. The distribution in particle size and
magnetic anisotropy energies may not be known in detail. Moreover, if inter-particle
interactions are significant, there will be a distribution in the strength of the interactions.
If the magnetic interaction is solely due to dipole coupling and the distance between the
particles is known, one can make at least rough estimates of the strength of the interactions
[43, 52]. In the present system it is likely that exchange interactions via the conduction
electrons in the mercury also play a significant role, and in this case there is no simple model
which can predict the interaction strength. In the following we include the interactions in
a simple model, in which the strength of the interaction is treated as a single parameter in
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the numerical calculation of the magnetization. As will be shown, the model gives a good
agreement between the calculated and experimental values.

In order to make the model calculations, we first have to estimate the size of the different
contributions to the energy of the system. At temperatures belowTB , the Mössbauer spectra
are affected by collective magnetic excitations, i.e. fluctuations of the direction of the
magnetization in directions close to the easy direction of magnetization [31, 55]. These
fluctuations are fast compared to the timescale of Mössbauer spectroscopy, and they lead
to a reduction of the magnetic hyperfine splitting in the Mössbauer spectra. In the Fe–Hg
system the magnetic inter-particle interaction is strong, and this will affect the collective
magnetic excitations. If we assume uniaxial anisotropy and that the interaction field is in
the same direction as the easy axis of magnetization, the energy of a particle in zero field
may be expressed as [31, 56]

E(θ) = −KV cos2θ −Km〈M〉M cosθ. (15)

HereKm is a coupling constant for the interaction between the magnetic particles,K the
magnetic anisotropy energy constant, andV the volume of a particle. θ is the angle
between the magnetization direction and the direction of the easy axis of magnetization,M

the magnetization of a particle, and〈M〉 is the average magnetization of the surrounding
particles. If the temperature dependence of the intrinsic magnetization of the particles is
neglected,KmM2 ≈ 3kBT ∗ [31, 56], whereT ∗ is the ordering temperature forK = 0.

For KV � kBT , the observed hyperfine field in zero applied field,Bobs(T ), may be
approximated [31] by

Bobs(T )

B0(T )
= 1− kBT

2KV + 3kBT ∗
. (16)

B0(T ) is the saturation hyperfine field at the temperatureT . The collective magnetic
excitations may be suppressed by the application of a magnetic field. The value of the
average saturation hyperfine field for the two magnetically split components in the iron–
mercury alloy has been obtained by applying a magnetic field of 4 T to thesample at 5 K
[35]. The temperature dependence of the saturation hyperfine field has also been measured
earlier [26]. By use of equation (16) at 5 K, 20 K, 50 K, and 80 K we could estimate
the value ofE1 = KV + 3kBT ∗/2 to be(5.2± 1.5) × 10−21 J. This value is of the same
order as those observed previously for similar samples,E1 = (4.2±0.7)×10−21 J [57] and
E1 = 6.5× 10−21 J [25].

In numerical calculations of the magnetization we must separate the contributions from
the anisotropy and the interactions to the energy. The influence ofKV on the value of
the ordering temperature,To, was investigated in [56]. ForA = KV/(kBT

∗) = 0, To is
equal toT ∗, and forA → ∞, To/T ∗ → 3 [56]. If we assume thatA is of the order
of 5–10, thenTo/T ∗ ≈ 1.8. Assuming thatTo = TP (extrapolated to zero field), we find
that T ∗ ≈ 50 K andKV ≈ 4.2 × 10−21 J. The values should be considered as rough
estimates because the calculation is based on assumptions and approximations which may
not be correct in detail. For non-interacting particles, the value ofKV = 4.2× 10−21 J
would yield a blocking temperature in magnetization measurements of about 12 K. This
means that when the sample is cooled the ordering occurs at a temperature higher than the
blocking temperature in a sample with similar, but non-interacting particles.

From the mean and the root mean square values of the magnetic moment, we may
estimate the width of the distribution of moments. Small particles are often obtained with
a log–normal distribution; thus we apply this in our case. A log–normal distribution of
magnetic moments with a mean value of 1.2×10−20 A m2 [35] and a root mean square value
of 2.0×10−20 A m2, obtained above, yields a median momentµmedian= 0.84×10−20 A m2,



Inter-particle interaction and magnetocaloric effect 7183

and a geometrical standard deviationσ = 2.5. Any mono-modal distribution would yield
similar results. The magnetic moment of a particle isµ = MV , and the anisotropy energy
is given byKV . If we assume thatK andM are independent of the particle size, thenµ
andKV both have the same distribution, determined by the distribution of particle sizes.

The shape of the magnetization curves (figure 6) can also be explained by the influence of
interactions. We made a detailed analysis of the experimental magnetization curve obtained
at 160 K, i.e. well aboveTd . The magnetization curve was compared with three different
models: (1) the Langevin function; (2) a model in which the anisotropy is included as
described in reference [37]; and (3) a model in which both the anisotropy and the magnetic
interaction are taken into account. In all three cases we integrated over the size distribution.

In the third model the energy of a particle in an external field is given [32] by

E ≈ −KV cos2α −
(
µB + 3kBT

∗b(T , B)
(
M(T )

M(T ∗)

)2)
cosθ. (17)

Here α is the angle between the magnetic moment of a particle and its easy axis.
b(T , B) = 〈M(T )〉/M(T ) is the reduced magnetization, andθ is the angle between the
magnetic moment and the applied external field. The interaction field is assumed to be
parallel to the applied field, but the easy directions are assumed to be randomly oriented.
The expectation value of the magnetization for a given value ofα can be calculated from

〈M〉 = M
(∫

cosθ exp(−E/kBT ) d�

)/(∫
exp(−E/kBT ) d�

)
. (18)

The calculation was carried out for each magnetic moment assumingT ∗ = 50 K and a root
mean square valueKV = 4.2× 10−21 J. Finally, the total magnetization was obtained by
superposition of the contributions from particles with different orientations of easy axes and
magnetic moments using the log–normal distribution described above. The experimental
and calculated magnetizations at 160 K are shown in figure 7. It is obvious that the first
two models cannot explain the experimental results, but the third model gives results in
excellent agreement with the experimental data. This strongly supports the conclusions
drawn above that interactions between the particles play an important role, and that the
value of the interaction parameter,T ∗, is of the order of 50 K.

In an earlier study of a similar sample [25] it was found that exposure to a magnetic field
gradient at room temperature leads to irreversible agglomeration of the magnetic particles.
Thus the particles in the present sample are also expected to be inhomogeneously distributed
in the mercury, and the inter-particle interaction may be essentially independent of the
overall concentration of particles in mercury. The magnetization measurements show in
fact that the magnetic particles are inhomogeneously distributed even at a macroscopic
scale (see section 3).

5.2. The magnetocaloric effect

The isothermal magnetization curves were used to calculate the entropy change as described
by equation (5). The entropy changes calculated in the range 70 to 200 K for two different
values of the maximal applied field are shown in figure 8. Strictly speaking, one can
only use magnetization values obtained aboveTd , since some of the particles may not reach
thermodynamic equilibrium below this temperature within the timescale of the measurement,
and equation (5) was derived from equilibrium thermodynamics. However, for temperatures
down toT ≈ 90 K, the difference betweenMZFC andMFC is small, indicating that only
few particles are blocked above 90 K. Therefore the model should be a good approximation
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Figure 8. The entropy change, estimated from the magnetization curves (figure 6) by using
equation (5) at various temperatures, (a) for a magnetic field change from 0 to 1 T, and (b) for
a magnetic field change from 0 to 0.1 T.

atT > 90 K. In applied fields that are larger than the anisotropy field, the particles will be in
thermal equilibrium at all temperatures. The model for non-interacting superparamagnetic
particles therefore has shortcomings only at low temperatures in small applied fields.

The magnetocaloric effect is larger for an applied field of 1 T than for 0.1 T, because
the change in the spin order, and thereby the entropy change, will be larger the larger the
applied field, until a limit is reached at which the spin system is fully aligned with the
applied magnetic field. The entropy change obtained for a magnetic field change from 0
to 1 T (figure 8(a)) is approximately−2.1× 10−3 J kg−1 K−1, almost independently of
temperature in the range from 130 to 200 K. This is a relatively large entropy change
compared to the values given in [30], where a maximum entropy change for a sample
containing 11 wt% Fe on silica was found to be approximately−1.7× 10−3 J kg−1 K−1,
when integrating up to 0.9 T at 100 K. In our case, a larger value for the entropy change
is obtained for a sample containing only 0.5 wt% Fe. When applying magnetic fields up to
0.1 T (figure 8(b)),−1S reaches a maximum of 2.5× 10−4 J kg−1 K−1 at about 140 K,
which is close to the temperaturesTd andTB . The relatively low entropy change reflects
the lower degree of overall spin ordering in this field range.

These experimental values of entropy changes are strongly enhanced compared to
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those which would be obtained for a sample with the same amount of non-interacting
paramagnetic Fe0 atoms with the same magnetic moment as those in the Fe1−xHgx alloy,
µ ≈ 2.2µB [35]. According to equation (4), such paramagnetic Fe0 atoms would yield
1S = −1.0× 10−5 J kg−1 K−1 for B1 = 1 T and1S = −1.0× 10−7 J kg−1 K−1 for
B1 = 0.1 T at 130 K. These values are two orders of magnitude lower than those obtained
for our particles.

Figure 9. The entropy change, calculated from the mean-field model (equation (14)) in the
temperature range 70–200 K with an ordering temperature of 93 K (filled circles). The upper
graph is for a magnetic field change from 0 to 1 T, and the lower graph is for a magnetic field
change from 0 to 0.1 T. The corresponding values calculated from the model for non-interacting
superparamagnetic particles (equation (9)) are shown in the same temperature range (triangles).

The experimental values of the entropy changes can also be compared to the theoretical
values for a sample consisting of non-interacting superparamagnetic particles. From the
high-field magnetization data [35] we found an extrapolated average magnetic moment of
the particles〈µ(0)〉 = 1.2×10−20 J T−1 at 0 K. This value differs from the RMS value due
to the particle size distribution. By comparing this value to the saturation magnetization,
one finds that there aren = 1.4× 1024 particles per m3 [35]. Inserting these values into
equation (9), which was derived assuming non-interacting superparamagnetic particles, and
taking into account the temperature dependence of the particle moment, the entropy change
can be calculated. Results forB1 = 0.1 T andB1 = 1 T are shown in figure 9. At
130 K we find−1S = 2.1× 10−3 J kg−1 K−1 and−1S = 8.5× 10−5 J kg−1 K−1, when
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integrating to 1 T and 0.1 T, respectively. At 200 K the corresponding entropy changes are
−1S = 1.4×10−3 J kg−1 K−1 and−1S = 3.3×10−5 J kg−1 K−1. These values are lower
than the experimental values. For the integration up to 0.1 T, the values are significantly
lower than the experimental values in the whole temperature range. The magnetic interaction
between the particles may be taken into account by using the mean-field model [34]. Using
equation (14) with an ordering temperature ofT0 = 93 K and an average magnetic moment
per particle of〈µ(0)〉 = 1.2×10−20 J T−1 at 0 K, we obtain the results shown in figure 9 for
B1 = 0.1 T and 1 T, respectively. Comparing with figure 8 it can be seen that the mean-field
model gives a qualitatively better description of the temperature dependence of the entropy
change than the model for non-interacting particles (e.g. we get a maximum in the entropy
change at the ordering temperature). The mean-field model also gives values for the entropy
change that are close to the experimental values, especially for the integration up to 1 T.
For the integration up to 0.1 T the model yields values for the entropy change that are larger
than the experimental ones near the ordering temperature, but at higher temperatures the
model gives a good description of the entropy change.

In our mean-field model, we assumed that the anisotropy energy is negligible, that the
mean field is parallel to the applied field, that all particles have the same volume, and that
the magnetic moments of all particles order at the same temperature. These conditions are
not fulfilled in a real system. Distributions in the particle size and the ordering temperature
will lead to broadening of the peaks in1S. The assumption that the mean field is parallel to
the applied field will lead to an overestimate of the entropy change, especially in low applied
magnetic fields where the influence of the mean field is relatively large. However, even
with these simplifications we conclude that the model that takes into account the magnetic
interaction between the particles gives a much better description of the experimental values
of the entropy change than the model for non-interacting particles.

The fact that the entropy change for large values ofB1 is almost constant over a large
temperature range is also consistent with theoretical results obtained by the Monte Carlo
method [7], for a particle system consisting of ultrafine strongly interacting particles. Bennet
et al [7] found that above the ordering temperature of the system the entropy change for
B1 = 1 T is slightly decreasing with increasing temperature for very small particles (10–30
atoms/particle), and almost constant over a wide temperature range for larger particles.

The results presented here were obtained on a kind of magnetic material that might
be useful for refrigeration at high temperature because of the favourable particle size,
magnetization, and strength of inter-particle interactions. Moreover, the good heat
conductivity of this system may be an advantage. However, the fraction of magnetic
material is very small. The change in temperature corresponding to a given change in
entropy can be calculated by use of equation (6). Using the value ofcB for Hg [58], the
magnetocaloric effect for the iron–mercury sample is found to be1T ≈ 3×10−3 K at 200 K
for magnetization in an applied field of 1 T. If one could make a concentrated sample of
interacting magnetic particles in the Hg matrix, the entropy change per unit mass would
increase drastically, ultimately up to about−4.0× 10−1 J kg−1 K−1. The corresponding
temperature change is1T ≈ 0.2 K in the temperature range 130 to 200 K. In this calculation
we assumed that the particles consist of pureα-Fe with a Debye temperatureθD = 420 K
[59] and thatcB can be derived from the Debye model.

6. Conclusions

It has been shown that the magnetic properties of the system consisting of ultrafine particles
of an iron–mercury alloy in Hg are strongly influenced by magnetic interactions. The initial
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susceptibility was found to follow a Curie–Weiss law. The ratio between the blocking
temperature, estimated from Mössbauer spectra, and the peak temperature of the zero-
field-cooled magnetization curves is much smaller than expected for a system of non-
interacting particles. Furthermore, the magnetization curve at 160 K, where all particles are
superparamagnetic, could only be fitted by using a model in which the influence of magnetic
interactions is included.

Magnetization measurements have been utilized to estimate the magnetic entropy change
as a function of temperature and applied magnetic fields. The magnetic entropy change is
found to have an almost constant value,−1S = 2.1×10−3 J kg−1 K−1, in the temperature
range from 130 to 200 K, for a magnetic field change from 0 to 1 T. For a magnetic
field change from 0 to 0.1 T, the magnetic entropy change was found to have a stronger
temperature dependence, reaching a maximum of−1S = 2.5 × 10−4 J kg−1 K−1 at
approximately 140 K. These values are much larger than those calculated for a paramagnetic
system with the same number of magnetic atoms. A model which takes into account the
interaction between the particles is found to give a better description of the entropy change
than that of non-interacting particles, especially at high temperatures.

If the interacting particles could be further concentrated in the mercury, the effect might
increase by a factor of up to 200, and the corresponding magnetocaloric effect would be
approximately 0.2 K for each magnetization cycle in the temperature range from 130 to
200 K. The present results indicate that it might be possible to engineer a material, based
on a nanostructured system, for magnetocaloric refrigeration at high temperatures.
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